Semiparametric Bayesian Analysis of Matched Case-Control Studies With Missing Exposure
نویسندگان
چکیده
This article considers Bayesian analysis of matched case-control problems when one of the covariates is partially missing. Within the likelihood context, the standard approach to this problem is to posit a fully parametric model among the controls for the partially missing covariate as a function of the covariates in the model and the variables making up the strata. Sometimes the strata effects are ignored at this stage. Our approach differs not only in that it is Bayesian, but, far more importantly, in the manner in which it treats the strata effects. We assume a Dirichlet process prior with a normal base measure for the stratum effects and estimate all of the parameters in a Bayesian framework. Three matched case-control examples and a simulation study are considered to illustrate our methods and the computing scheme.
منابع مشابه
A Bayesian Semiparametric Model for Case - ControlStudies with Errors
We develop a model and a numerical estimation scheme for a Bayesian approach to inference in case-control studies with errors in covariables. The model proposed in this paper is based on a nonparametric model for the unknown joint distribution for the missing data, the observed covariates and the proxy. This nonparametric distribution deenes the measurement error component of the model which re...
متن کاملBayesian semiparametric modeling for matched case-control studies with multiple disease states.
We present a Bayesian approach to analyze matched "case-control" data with multiple disease states. The probability of disease development is described by a multinomial logistic regression model. The exposure distribution depends on the disease state and could vary across strata. In such a model, the number of stratum effect parameters grows in direct proportion to the sample size leading to in...
متن کاملSemiparametric Bayesian analysis of gene-environment interactions with error in measurement of environmental covariates and missing genetic data.
Case-control studies are widely used to detect gene-environment interactions in the etiology of complex diseases. Many variables that are of interest to biomedical researchers are difficult to measure on an individual level, e.g. nutrient intake, cigarette smoking exposure, long-term toxic exposure. Measurement error causes bias in parameter estimates, thus masking key features of data and lead...
متن کامل